3D data processing, C++, Data structuring, Machine learning techniques, SPARK Programming
About the role:
Ray aims to provide a universal API for building distributed applications (e.g. a machine learning pipeline of feature engineering, model training, and evaluation). Data is usually a core element connecting these different stages, and therefore plays a critical role in Ray’s usability, performance, and stability. We are looking for strong engineers to build, optimize, and scale Ray’s Datasets library and data processing capabilities in general.
About the Ray Data team:
The Ray Data team currently develops and maintains the Ray Datasets library, which is already powering critical production use cases (e.g. large scale data compaction at Amazon, and ML pipeline at Alibaba). Ray Datasets is a Python library built on top of Apache Arrow and Ray Core (Ray’s C++ backend), and the Ray Data team interacts closely with Ray Core components including the scheduler and the memory & I/O subsystems. The Ray Data team also works closely with Ray’s ML libraries including Train, RLlib, and Serve.
A snapshot of projects you will work on:
As part of this role, you will:
We'd love to hear from you if have:
Compensation
Anyscale Inc. is an Equal Opportunity Employer. Candidates are evaluated without regard to age, race, color, religion, sex, disability, national origin, sexual orientation, veteran status, or any other characteristic protected by federal or state law.
At Anyscale, we're on a mission to democratize distributed computing and make it accessible to software developers of all skill levels. We’re commercializing Ray, a popular open-source project that's creating an ecosystem of libraries for scalable machine learning. Companies like OpenAI, Uber, Spotify, Instacart, Cruise, and many more, have Ray in their tech stacks to accelerate the progress of AI applications out into the real world.