Java Programming, Python Programming, SQL, Big Data Technology, MATLAB Programming, R Programming, SAS, Large scale data processing
We are seeking a DSP Analytics scientist to further the development and application of analytics methods to examine the complex data flows of the DSP, and to translate deep-dives into actionable insights for our product teams. In this role you will develop new tools to analyze our advertising data to help improve the performance of our bidding algorithms, targeting and relevance systems, help advance our 3rd party and O&O supply strategy, and evaluate the adoption and impact of feature releases.
Key job responsibilities
A day in the life
The DSP Analytics Scientist will work closely with business leaders and engineers on developing common data architecture that will optimize our data logging at different grains, and will allow data interoperability from bid flow to optimization to campaign delivery. The candidate will then analyze the data and present papers and ongoing reports on actionable insights.
About the team
The Ads Science Product Team's Mission: Work alongside those who need product data to apply objective perspective and business logic to uncover insights, advise strategic decisions, and adjust to industry changes.
BASIC QUALIFICATIONS
PREFERRED QUALIFICATIONS
Amazon is committed to a diverse and inclusive workplace. Amazon is an equal opportunity employer and does not discriminate on the basis of race, national origin, gender, gender identity, sexual orientation, protected veteran status, disability, age, or other legally protected status. For individuals with disabilities who would like to request an accommodation, please visit https://www.amazon.jobs/en/disability/us
Amazon.com, Inc. is an American multinational technology company with operations in cloud computing, streaming media, artificial intelligence, and e-commerce. The company has been referred to as one of the most influential economic and cultural forces in the world, and it is one of the world's most valuable brands.
Vancouver, BC, Canada
2-4 year
Toronto, ON, Canada
2-4 year
Vancouver, BC, Canada
2-4 year
Toronto, ON, Canada
2-4 year
Vancouver, BC, Canada
2-4 year
Vancouver, BC, Canada
2-4 year
Vancouver, BC, Canada
2-4 year
Vancouver, BC, Canada
2-4 year
Berlin, Germany
2-4 year
Rome, Metropolitan City of Rome, Italy
2-4 year
Arlington, VA, USA
2-4 year
Austin, TX, USA
2-4 year
Bellevue, WA, USA
2-4 year
California City, CA, USA
2-4 year
Newark, NJ, USA
2-4 year
Newark, NJ, USA
2-4 year
Palo Alto, CA, USA
2-4 year
Seattle, WA, USA
2-4 year
Seattle, WA, USA
2-4 year
Seattle, WA, USA
2-4 year
Seattle, WA, USA
2-4 year
Seattle, WA, USA
2-4 year
Seattle, WA, USA
2-4 year
Seattle, WA, USA
2-4 year
Seattle, WA, USA
2-4 year
Sumner, WA, USA
2-4 year
Seattle, WA, USA
2-4 year
Mumbai, Maharashtra, India
2-4 year
Berlin, Germany
2-4 year
New York, NY, USA
2-4 year
New York, NY, USA
2-4 year
New York, NY, USA
2-4 year
New York, NY, USA
2-4 year
New York, NY, USA
2-4 year
Westborough, MA, USA
0-2 year
Arlington, TX, USA
2-4 year
Seattle, WA, USA
6-8 year
Sunnyvale, CA, USA
6-8 year
New York, NY, USA
6-8 year
Seattle, WA, USA
4-6 year
North Reading, MA, USA
4-6 year
Palo Alto, CA, USA
0-2 year
New York, NY, USA
0-2 year
Seattle, WA, USA
0-2 year
Arlington, VA, USA
0-2 year
New York, NY, USA
4-6 year
Arlington, VA, USA
4-6 year
Seattle, WA, USA
4-6 year
San Diego, CA, USA
4-6 year
Irvine, CA, USA
4-6 year
San Francisco, CA, USA
4-6 year
Brisbane QLD, Australia
0-2 year
Adelaide SA, Australia
0-2 year
Canberra ACT, Australia
0-2 year
Toronto, ON, Canada
0-2 year
Vancouver, BC, Canada
4-6 year
Vancouver, BC, Canada
2-4 year
Vancouver, BC, Canada
2-4 year
San José Province, San José, Costa Rica
0-2 year
Palo Alto, CA, USA
0-2 year
Seattle, WA, USA
0-2 year